International Journal of Aerospace Engineering (Jan 2024)
Improved Variable Structure Interacting Multimodels for Target Trajectory Tracking and Extrapolation
Abstract
To improve the lengthy computation time of conventional variable structure interacting multiple model (VSIMM) algorithm and increase the precision of target prediction and extrapolation, the target state and flight intent information captured by the Automatic Dependent Surveillance-Broadcast (ADS-B) are used as the model’s prior information; combining this information with VSIMM theoretical framework, we purpose an intent variable structure interacting multiple model (INT-VSIMM) algorithm. Firstly, the motion pattern of the target in the flight phase of the flight path is decomposed, and complete sets of motion models are established. Secondly, according to the principle of directed graph switching, a model set switching method is designed, which is mainly based on “hard” switching and supplemented by “soft” switching. Finally, the INT-VSIMM algorithm is used to track the trajectory of the target aircraft, and short-term trajectory extrapolation is performed based on the target state estimation. The simulation results show that the target tracking performance computational time based on the INT-VSIMM algorithm is superior to the comparative existing methods, and the extrapolated trajectory has less error in the short term, which can satisfy the needs of conflict detection.