Atmosphere (May 2024)

Simulation and Diagnosis of Physical Precipitation Process of Local Severe Convective Rainstorm in Ningbo

  • Tingting Lu,
  • Yeyi Ding,
  • Zan Liu,
  • Fan Wu,
  • Guoqiang Xue,
  • Chengming Zhang,
  • Yuan Fu

DOI
https://doi.org/10.3390/atmos15060658
Journal volume & issue
Vol. 15, no. 6
p. 658

Abstract

Read online

On 31 July 2021, Ningbo, an eastern coast city in China, experienced a severe convective rainstorm, characterized by intense short-duration precipitation extremes with a maximum rainfall rate of 130 mm h−1. In this research, we first analyzed this rainstorm using Doppler radar and precipitation observation and then conducted high-resolution simulation for it. A three-dimensional precipitation diagnostic equation is introduced to quantitatively analyze the microphysical processes during the rainstorm. It is shown that this rainstorm was triggered and developed locally in central Ningbo under favorable large-scale quasi-geostrophic conditions and local conditions. In the early stage, the precipitation increase is mainly driven by the strong convergence of water vapor, and a noticeable increase in both the intensity and spatial extent of uplift promotes the upward transportation of water vapor. As the water vapor flux and associated convergence weaken in the later stage, the precipitation reduces accordingly. Cloud microphysical processes are also important in the entire precipitation process. The early stage updraft supports the escalations in raindrops, with the notable fluctuations in raindrop concentrations directly linked to variations in ground precipitation intensity. The behavior of graupel particles is intricately connected to their melting as they fall below the zero-degree layer. Although cloud water and snow exhibit changes during this period, the magnitudes of these adjustments are considerably less pronounced than those in raindrops and graupels, highlighting the differentiated response of various condensates to the convective dynamics. These results can help deepen the understanding of local severe rainstorms and provide valuable scientific references for practical forecasting.

Keywords