Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom
Irasema Oroz-Parra,
Mario Navarro,
Karla E. Cervantes-Luevano,
Carolina Álvarez-Delgado,
Guy Salvesen,
Liliana N. Sanchez-Campos,
Alexei F. Licea-Navarro
Affiliations
Irasema Oroz-Parra
Biomedical Innovation Department, Scientific Research and High Education Center of Ensenada (CICESE), Carretera Ensenada-Tijuana No 3918 Fracc, Zona Playitas Ensenada C.P. 22860, Baja California, Mexico
Mario Navarro
Cancer Center, Stanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
Karla E. Cervantes-Luevano
Biomedical Innovation Department, Scientific Research and High Education Center of Ensenada (CICESE), Carretera Ensenada-Tijuana No 3918 Fracc, Zona Playitas Ensenada C.P. 22860, Baja California, Mexico
Carolina Álvarez-Delgado
Biomedical Innovation Department, Scientific Research and High Education Center of Ensenada (CICESE), Carretera Ensenada-Tijuana No 3918 Fracc, Zona Playitas Ensenada C.P. 22860, Baja California, Mexico
Guy Salvesen
Cancer Center, Stanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
Liliana N. Sanchez-Campos
Biomedical Innovation Department, Scientific Research and High Education Center of Ensenada (CICESE), Carretera Ensenada-Tijuana No 3918 Fracc, Zona Playitas Ensenada C.P. 22860, Baja California, Mexico
Alexei F. Licea-Navarro
Biomedical Innovation Department, Scientific Research and High Education Center of Ensenada (CICESE), Carretera Ensenada-Tijuana No 3918 Fracc, Zona Playitas Ensenada C.P. 22860, Baja California, Mexico
Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.