Molecules (Jan 2017)

Preparation of Thermo-Responsive and Cross-Linked Fluorinated Nanoparticles via RAFT-Mediated Aqueous Polymerization in Nanoreactors

  • Jiachen Ma,
  • Luqing Zhang,
  • Bing Geng,
  • Umair Azhar,
  • Anhou Xu,
  • Shuxiang Zhang

DOI
https://doi.org/10.3390/molecules22020152
Journal volume & issue
Vol. 22, no. 2
p. 152

Abstract

Read online

In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. 1H-NMR and 19F-NMR spectra showed that thermo-responsive diblock P(DMA-b-NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA-b-NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14–44 °C, suggesting good temperature sensitivity for these nanoparticles.

Keywords