Remote Sensing (Oct 2023)

Better Inversion of Wheat Canopy SPAD Values before Heading Stage Using Spectral and Texture Indices Based on UAV Multispectral Imagery

  • Quan Yin,
  • Yuting Zhang,
  • Weilong Li,
  • Jianjun Wang,
  • Weiling Wang,
  • Irshad Ahmad,
  • Guisheng Zhou,
  • Zhongyang Huo

DOI
https://doi.org/10.3390/rs15204935
Journal volume & issue
Vol. 15, no. 20
p. 4935

Abstract

Read online

In China’s second-largest wheat-producing region, the mid-lower Yangtze River area, cold stress impacts winter wheat production during the pre-heading growth stage. Previous research focused on specific growth stages, lacking a comprehensive approach. This study utilizes Unmanned Aerial Vehicle (UAV) multispectral imagery to monitor Soil-Plant Analysis Development (SPAD) values throughout the pre-heading stage, assessing crop stress resilience. Vegetation Indices (VIs) and Texture Indices (TIs) are extracted from UAV imagery. Recursive Feature Elimination (RFE) is applied to VIs, TIs, and fused variables (VIs + TIs), and six machine learning algorithms are employed for SPAD value estimation. The fused VIs and TIs model, based on Long Short-Term Memory (LSTM), achieves the highest accuracy (R2 = 0.8576, RMSE = 2.9352, RRMSE = 0.0644, RPD = 2.6677), demonstrating robust generalization across wheat varieties and nitrogen management practices. This research aids in mitigating winter wheat frost risks and increasing yields.

Keywords