PLoS ONE (Jan 2023)

Improvement of predictive accuracies of functional outcomes after subacute stroke inpatient rehabilitation by machine learning models.

  • Yuta Miyazaki,
  • Michiyuki Kawakami,
  • Kunitsugu Kondo,
  • Masahiro Tsujikawa,
  • Kaoru Honaga,
  • Kanjiro Suzuki,
  • Tetsuya Tsuji

DOI
https://doi.org/10.1371/journal.pone.0286269
Journal volume & issue
Vol. 18, no. 5
p. e0286269

Abstract

Read online

ObjectivesStepwise linear regression (SLR) is the most common approach to predicting activities of daily living at discharge with the Functional Independence Measure (FIM) in stroke patients, but noisy nonlinear clinical data decrease the predictive accuracies of SLR. Machine learning is gaining attention in the medical field for such nonlinear data. Previous studies reported that machine learning models, regression tree (RT), ensemble learning (EL), artificial neural networks (ANNs), support vector regression (SVR), and Gaussian process regression (GPR), are robust to such data and increase predictive accuracies. This study aimed to compare the predictive accuracies of SLR and these machine learning models for FIM scores in stroke patients.MethodsSubacute stroke patients (N = 1,046) who underwent inpatient rehabilitation participated in this study. Only patients' background characteristics and FIM scores at admission were used to build each predictive model of SLR, RT, EL, ANN, SVR, and GPR with 10-fold cross-validation. The coefficient of determination (R2) and root mean square error (RMSE) values were compared between the actual and predicted discharge FIM scores and FIM gain.ResultsMachine learning models (R2 of RT = 0.75, EL = 0.78, ANN = 0.81, SVR = 0.80, GPR = 0.81) outperformed SLR (0.70) to predict discharge FIM motor scores. The predictive accuracies of machine learning methods for FIM total gain (R2 of RT = 0.48, EL = 0.51, ANN = 0.50, SVR = 0.51, GPR = 0.54) were also better than of SLR (0.22).ConclusionsThis study suggested that the machine learning models outperformed SLR for predicting FIM prognosis. The machine learning models used only patients' background characteristics and FIM scores at admission and more accurately predicted FIM gain than previous studies. ANN, SVR, and GPR outperformed RT and EL. GPR could have the best predictive accuracy for FIM prognosis.