Data in Brief (Aug 2022)
Dataset of 16S rRNA and alkB genes in hydrocarbon polluted soils of Kuwait as revealed by Pyrosequencing
Abstract
The data in this article was generated by high throughput sequencing of moderately hydrocarbon polluted sites (S1 and S2) and a heavily polluted site (S3) in Kuwait. Deoxyribonucleic acid (DNA) extracted from each site was subjected to polymerase chain reaction (PCR) amplification employing conserved primers of 16S rRNA and alkB genes. Unique Molecular Identifiers (MID) tags were added to individual samples prior to pooling and sequencing on a Roche GS FLX platform using Pyrosequencing Titanium Chemistry. Raw sff files were deposited to the public repository of National Centre for Biotechnology Information (NCBI) under accession no PRJNA816075. The sff files were clipped according to the MID tags and converted to fasta format. 16S rRNA gene sequences were aligned against the SILVA database. The predominant genera at S1 and S2 was Alkanindiges whereas Alcanivorax, was highly abundant at S3. Alkanindiges have been found to play a key role in hydrocarbon degradation and Alcanivorax genus is known for its hydrocarbon degrading capability. The alk B gene sequences were subjected to blastx. The diversity of alkB gene was higher in S3 as compared to S1 and S2. These findings may open the way to the use of the genera Alkanindiges and Alcanivorax in the rehabilitation of hydrocarbon-contaminated sites in hot, arid climates. The isolation of these microorganisms and the design of bioaugmentation procedures specific to the dry climate could be a key step towards the restoration of hydrocarbon contaminated soils.