Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions
Marcelo Jaime,
Carolina Corvalán Moya,
Franziska Weickert,
Vivien Zapf,
Fedor F. Balakirev,
Mark Wartenbe,
Priscila F. S. Rosa,
Jonathan B. Betts,
George Rodriguez,
Scott A. Crooker,
Ramzy Daou
Affiliations
Marcelo Jaime
National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Carolina Corvalán Moya
Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Franziska Weickert
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
Vivien Zapf
National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Fedor F. Balakirev
National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Mark Wartenbe
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
Priscila F. S. Rosa
Condensed Matter and Magnet Science Group, Materials, Physics, and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Jonathan B. Betts
National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
George Rodriguez
Center for Integrated Nanotechnologies Group, Materials, Physics, and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Scott A. Crooker
National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Ramzy Daou
Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, Ecole Nationale Supérieure d'Ingénieurs de Caen, Université de Caen Normandie, Centre National de la Recherche Scientifique, 14050 Caen, France
In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10−8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.