Scientific Reports (May 2024)

Microtopography effects on pedogenesis in the mudstone-derived soils of the hilly mountainous regions

  • Banglin Luo,
  • Jiangwen Li,
  • Jiahong Tang,
  • Chaofu Wei,
  • Shouqin Zhong

DOI
https://doi.org/10.1038/s41598-024-62540-y
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Topography is a critical factor that determines the characteristics of regional soil formation. Small-scale topographic changes are referred to microtopographies. In hilly mountainous regions, the redistribution of water and soil materials caused by microtopography is the main factor affecting the spatial heterogeneity of soil and the utilization of land resources. In this study, the influence of microtopography on pedogenesis was investigated using soil samples formed from mudstones with lacustrine facies deposition in the middle of the Sichuan Basin. Soil profiles were sampled along the slopes at the summit, shoulder, backslope, footslope, and toeslope positions. The morphological, physicochemical, and geochemical attributes of profiles were analyzed. The results showed that from the summit to the toeslope, soil thickness increased significantly and profile configuration changed from A–C to A–B–C. The total contents of Ca and Na decreased at the summit, backslope, and footslope, while the total contents of Al, Fe and Mg showed an opposite trend. On the summit and shoulder of the hillslope, weathered materials were transported away by gravity and surface erosion, exposing new rocks. As a result, soil development in these areas was relatively weak. In flat areas such as the footslope and toeslope with sufficient water conditions, the addition of weathered components and the prolonged contact between water, soil, and sediment led to further chemical weathering, resulting in highly developed characteristics. Microtopography may influence physicochemical properties, chemical weathering, and redistribution of water and materials, causing variations in pedogenic characteristics at different slope positions.

Keywords