Serbian Astronomical Journal (Jan 2005)
Structure formation cosmic rays: Identifying observational constraints
Abstract
Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs) would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1) we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB); 2) we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs), which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in concert will shed a new light on the SFCR population and possibly give some answers about the pressing lithium problem. .
Keywords