Sensors (May 2019)
Minimizing the Adverse Effects of Asymmetric Links: A Novel Cooperative Asynchronous MAC Protocol for Wireless Sensor Networks
Abstract
As Wireless Sensor Networks (WSNs) grow in popularity, researchers are now focusing more on some challenging issues that significantly degrade overall performance, such as energy hole mitigation, link asymmetry minimization, etc. Link asymmetry is a problem that arises when the coverage distance between two adjacent nodes varies. It creates an obstacle to overcome when designing an efficient Medium Access Control (MAC) protocol for WSNs with low duty-cycling. This phenomenon poses an especially difficult challenge for receiver-initiated asynchronous MAC protocols, which are popular due to their relatively higher energy efficiency. Exploiting the benefits of cooperative communication has emerged as one of the viable solutions to overcome this limitation. Cooperative communication in WSNs has received a lot of attention in recent years. Many researchers have worked to create a MAC layer supporting cooperative communication. However, the association of cooperative communication with an asymmetric link is not studied in the literature. In this research work, COASYM-MAC, a cooperative asynchronous MAC protocol for WSNs, is proposed based on a receiver-initiated MAC protocol that uses the fact that nodes have alternate paths between them to reduce link asymmetry. A key feature of the proposed protocol is that the optimal helper node is selected automatically in case of link asymmetry. Simulations exhibited that COASYM-MAC performs significantly better than a state-of-the-art MAC protocol for WSNs that handles asymmetric links, ASYM-MAC.
Keywords