BMC Evolutionary Biology (Aug 2010)

Genomic comparisons of <it>Brucella </it>spp. and closely related bacteria using base compositional and proteome based methods

  • Bohlin Jon,
  • Snipen Lars,
  • Cloeckaert Axel,
  • Lagesen Karin,
  • Ussery David,
  • Kristoffersen Anja B,
  • Godfroid Jacques

DOI
https://doi.org/10.1186/1471-2148-10-249
Journal volume & issue
Vol. 10, no. 1
p. 249

Abstract

Read online

Abstract Background Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy. In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures, genomic codon and amino acid frequencies based comparisons) and proteomes (all-against-all BLAST protein comparisons and pan-genomic analyses). Results We found that the oligonucleotide based methods gave different results compared to that of the proteome based methods. Differences were also found between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences could be detected between all genera included in this study using the codon and amino acid frequencies based methods. Proteome comparisons were found to be in strong accordance with current Brucella taxonomy indicating a remarkable association between gene gain or loss on one hand and mutations in marker genes on the other. The proteome based methods found greater similarity between Brucella species and Ochrobactrum species than between species within genus Agrobacterium compared to each other. In other words, proteome comparisons of species within genus Agrobacterium were found to be more diverse than proteome comparisons between species in genus Brucella and genus Ochrobactrum. Pan-genomic analyses indicated that uptake of DNA from outside genus Brucella appears to be limited. Conclusions While both the proteome based methods and the Markov chain based genomic signatures were able to reflect environmental diversity between the different species and strains of genus Brucella, the genomic codon and amino acid frequencies based comparisons were not found adequate for such comparisons. The proteome comparison based phylogenies of the species in genus Brucella showed a surprising consistency with current Brucella taxonomy.