Mathematics (Oct 2022)

An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation

  • Chifaa Al Dahik,
  • Zeina Al Masry,
  • Stéphane Chrétien,
  • Jean-Marc Nicod,
  • Landy Rabehasaina

DOI
https://doi.org/10.3390/math10214009
Journal volume & issue
Vol. 10, no. 21
p. 4009

Abstract

Read online

This work addresses the robust counterpart of the shortest path problem (RSPP) with a correlated uncertainty set. Because this problem is difficult, a heuristic approach, based on Frank–Wolfe’s algorithm named discrete Frank–Wolfe (DFW), has recently been proposed. The aim of this paper is to propose a semi-definite programming relaxation for the RSPP that provides a lower bound to validate approaches such as the DFW algorithm. The relaxed problem is a semi-definite programming (SDP) problem that results from a bidualization that is done through a reformulation of the RSPP into a quadratic problem. Then, the relaxed problem is solved by using a sparse version of Pierra’s decomposition in a product space method. This validation method is suitable for large-size problems. The numerical experiments show that the gap between the solutions obtained with the relaxed and the heuristic approaches is relatively small.

Keywords