Particle and Fibre Toxicology (Aug 2023)

Long-term exposure to polystyrene microplastics triggers premature testicular aging

  • Deyi Wu,
  • Meng Zhang,
  • Ting Ting Bao,
  • Hainan Lan

DOI
https://doi.org/10.1186/s12989-023-00546-6
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Plastic pollution is greatly serious in the ocean and soil. Microplastics (MPs) degraded from plastic has threatened animals and humans health. The accumulation of MPs in the tissues and blood in animals and humans has been found. There is therefore a need to assess the toxicological effects of MPs on the reproductive system. Results In this study, we explored the effect of polystyrene microplastics (PS-MPs) on premature testicular aging in vitro and in vivo. In vitro, we found that testicular sertoli cells (TM4 cells) was prematurely senescent following PS-MPs treatment by the evaluation of a range of aging marker molecules (such as Sa-β-gal, p16 and 21). TM4 cells were then employed for in vitro model to study the potential molecular mechanism by which PS-MPs induce the premature senescence of TM4 cells. NF-κB is identified as a key molecule for PS-MPs-induced TM4 cellular senescence. Furthermore, through eliminating reactive oxygen species (ROS), the activation of nuclear factor kappa B (NF-κB) was blocked in PS-MPs-induced senescent TM4 cells, indicating that ROS triggers NF-κB activation. Next, we analyzed the causes of mitochondrial ROS (mtROS) accumulation induced by PS-MPs, and results showed that Ca2+ overload induced the accumulation of mtROS. Further, PS-MPs exposure inhibits mitophagy, leading to the continuous accumulation of senescent cells. In vivo, 8-week-old C57 mice were used as models to assess the effect of PS-MPs on premature testicular aging. The results illustrated that PS-MPs exposure causes premature aging of testicular tissue by testing aging markers. Additionally, PS-MPs led to oxidative stress and inflammatory response in the testicular tissue. Conclusion In short, our experimental results revealed that PS-MPs-caused testicular premature aging is dependent on Ca2+/ROS/NF-κB signaling axis. The current study lays the foundation for further exploration of the effects of microplastics on testicular toxicology.

Keywords