Polymers (Apr 2024)

A PCF Sensor Design Using Biocompatible PDMS for Biosensing

  • Yanxin Yang,
  • Jinze Li,
  • Hao Sun,
  • Jiawei Xi,
  • Li Deng,
  • Xin Liu,
  • Xiang Li

DOI
https://doi.org/10.3390/polym16081042
Journal volume & issue
Vol. 16, no. 8
p. 1042

Abstract

Read online

A novel photonic crystal fiber (PCF) sensor for refractive index detection based on polydimethylsiloxane (PDMS) is presented in this research, as well as designs for single-channel and dual-channel structures for this PDMS-PCF sensor. The proposed structures can be used to develop sensors with biocompatible polymers. The performance of the single-channel PDMS-PCF sensor was studied, and it was found that adjusting parameters such as pore diameter, lattice constant, distance between the D-shaped structure and the fiber core, and the radius of gold nanoparticles can optimize the sensor’s performance. The findings indicate that the detection range of the single-channel photonic crystal is 1.21–1.27. The maximum wavelength sensitivity is 10,000 nm/RIU with a resolution of 1×10−5 RIU, which is gained when the refractive index is set to 1.27. Based on the results of the single-channel PCF, a dual-channel PDMS-PCF sensor is designed. The refractive index detection range of the proposed sensor is 1.2–1.28. The proposed sensor has a maximum wavelength sensitivity of 13,000 nm/RIU and a maximum resolution of 7.69×10−6 RIU at a refractive index of 1.28. The designed PDMS-PCF holds tremendous potential for applications in the analysis and detection of substances in the human body in the future.

Keywords