Ticks and Tick-Borne Diseases (May 2024)
Density of host-seeking Ixodes scapularis nymphs by region, state, and county in the contiguous United States generated through national tick surveillance
Abstract
The majority of vector-borne disease cases reported annually in the United States are caused by pathogens spread by the blacklegged tick, Ixodes scapularis. The number and geographic distribution of cases have increased as the geographic range and abundance of the tick have expanded in recent decades. A large proportion of Lyme disease and other I. scapularis-borne diseases are associated with nymphal tick bites; likelihood of such bites generally increases with increasing nymphal densities. National tick surveillance was initiated in 2018 to track changes in the distribution and abundance of medically important ticks at the county spatial scale throughout the United States. Tick surveillance records, including historical data collected prior to the initiation of the national program, are collated in the ArboNET Tick Module database. Through exploration of ArboNET Tick Module data, we found that efforts to quantify the density of host-seeking I. scapularis nymphs (DON) were unevenly distributed among geographic regions with the greatest proportion of counties sampled in the Northeast and Upper Midwest. Submissions covering tick collections from 2004 through 2022 revealed extensive variation in DON estimates at collection site, county, state, and regional spatial scales. Throughout the entire study period, county DON estimates ranged from 0.0 to 488.5 nymphs/1,000 m2 . Although substantial variation was recorded within regions, DON estimates were greatest in the Northeast, Upper Midwest, and northern states within the Southeast regions (Virginia and North Carolina); densities were intermediate in the Ohio Valley and very low in the South and Northern Rockies and Plains regions. The proportion of counties classified as moderate or high DON was lower in the Northeast, Ohio Valley, and Southeast regions during the 2004 through 2017 time period (prior to initiation of the national tick surveillance program) compared to 2018 through 2022; DON estimates remained similarly low between these time periods in the South and the Northern Rockies and Plains regions. Despite the limitations described herein, the ArboNET Tick Module provides useful data for tracking changes in acarological risk across multiple geographic scales and long periods of time.