On-Line pH Measurement Cation Exchange Kinetics of Y<sup>3+</sup>-Exchanged Alginic Acid for Y<sub>2</sub>O<sub>3</sub> Nanoparticles Synthesis
Lingyu Liu,
Fengchen Zhou,
Yuxiang Zhang,
Yanhua Sun,
Shixing Zhang,
Kun Cai,
Ruichong Qiu,
Yi Lin,
Wenjun Fa,
Zihua Wang
Affiliations
Lingyu Liu
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Fengchen Zhou
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Yuxiang Zhang
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Yanhua Sun
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Shixing Zhang
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Kun Cai
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Ruichong Qiu
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Yi Lin
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
Wenjun Fa
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China
Zihua Wang
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
A new sol-gel method that employs cation exchange from an aqueous metal ion solution with H+ ions of granulated alginic acid was developed for synthesizing high-purity Y2O3 nanoparticles. In this study, the cation exchange kinetics of H+~Y3+ in aqueous solution were analyzed using on-line pH technology and off-line inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. Pseudo 2nd-order models were utilized to evaluate the parameters of the kinetics, suggesting that the concentration of H+~Y3+ involved in the cation exchange reaction was 1:1.733. Further, a comprehensive understanding of the Y-ALG calcination process was developed using thermo-gravimetric analysis, along with results obtained from differential scanning calorimetry (TGA/DSC). A detailed analysis of the XRD Rietveld refinement plots revealed that the crystallite sizes of Y2O3 nanoparticles were about 4 nm (500 °C) and 15 nm (800 °C), respectively. Differential pulse voltammetry (DPV) was employed to investigate the electrochemical oxidation of catechol. The oxidation peak currents of catechol at Y2O3 (500 °C)/GCE and Y2O3 (800 °C)/GCE showed two stages linear function of concentration (2.0~20.0 × 10−6 mol/L, 20.0~60.0 × 10−6 mol/L). The results indicated that the detection limits were equal to 2.4 × 10−7 mol/L (Y2O3 (500 °C)/GCE) and 7.8 × 10−7 mol/L (Y2O3 (800 °C)/GCE). The study not only provided a method to synthesize metal oxide, but also proposed a promising on-line pH model to study cation exchange kinetics.