Scientific Reports (Jul 2022)
Study on blasting characteristics of rock mass with weak interlayer based on energy field
Abstract
Abstract In order to explore the influence of weak interlayer on blasting characteristics in natural rock mass, by using the particle flow code (PFC2D), a single hole blasting numerical model of hard rock with soft interlayer is established. The blasting experiments at different positions and thicknesses of weak interlayer are carried out. Then an in-depth analysis from the perspectives of crack effect, stress field and energy field is made. Results showed that: (i) When the explosion is initiated outside the weak interlayer, if the interlayer is located within about twice the radius of the crushing area, the closer the interlayer is to the blast hole, the higher the damage degree of the rock mass around the blast hole. And the number of cracks will increase by about 1–2% when the distance between the weak interlayer and the blast hole decreases by 0.5 m. (ii) When detonating outside the weak interlayer, if the interlayer is within about 4 times radius of the crushing area, the hard rock on both sides of the weak interlayer will in a high stress state. Under the same case, the peak kinetic energy and peak friction energy will increase by about 23 and 13%, respectively, and the peak strain energy will increase by about 218 kJ for every 0.1 m increase in the thickness of the weak interlayer.