Energy Material Advances (Jan 2023)

Constructing Cation Vacancy Defects on NiFe-LDH Nanosheets for Efficient Oxygen Evolution Reaction

  • Yingying Hao,
  • Chen Qiao,
  • Shuping Zhang,
  • Yibin Zhu,
  • Lei Ji,
  • Chuanbao Cao,
  • Jiatao Zhang

DOI
https://doi.org/10.34133/energymatadv.0040
Journal volume & issue
Vol. 4

Abstract

Read online

Active site exposure and intrinsic catalytic performance are considered important aspects of oxygen evolution reaction catalyst design. In this work, the coordination capacity of tributylphosphine is utilized to construct cationic vacancy defects on NiFe-LDH nanosheets. As-prepared defective NiFe-LDH nanosheets show not only the optimization of the exposure ability of the active site but also the intrinsic catalytic capacity is improved by construction of cationic vacancy defect to tune local electronic structure. The x-ray photoelectron spectroscopy results revealed that after reconstruction of the prepared d-NiFe-LDH, high-valence Ni and Fe can stably appear on the surface of the material. The presence of high-valence Ni and Fe is considered to be the main reason to improve the intrinsic catalytic capacity of catalysts. Finally, d-NiFe-LDH nanosheets show excellent catalytic performance (η10 = 243 mV) and remarkable long-term stability.