iScience (Dec 2023)

Chronic AMPK inactivation slows SHH medulloblastoma progression by inhibiting mTORC1 signaling and depleting tumor stem cells

  • Daniel Shiloh Malawsky,
  • Taylor Dismuke,
  • Hedi Liu,
  • Ethan Castellino,
  • Jay Brenman,
  • Biplab Dasgupta,
  • Andrey Tikunov,
  • Timothy R. Gershon

Journal volume & issue
Vol. 26, no. 12
p. 108443

Abstract

Read online

Summary: We show that inactivating AMPK in a genetic medulloblastoma model depletes tumor stem cells and slows progression. In medulloblastoma, the most common malignant pediatric brain tumor, drug-resistant stem cells co-exist with transit-amplifying cells and terminally differentiated neuronal progeny. Prior studies show that Hk2-dependent glycolysis promotes medulloblastoma progression by suppressing neural differentiation. To determine how the metabolic regulator AMPK affects medulloblastoma growth and differentiation, we inactivated AMPK genetically in medulloblastomas. We bred conditional Prkaa1 and Prkaa2 deletions into medulloblastoma-prone SmoM2 mice and compared SmoM2-driven medulloblastomas with intact or inactivated AMPK. AMPK-inactivation increased event-free survival (EFS) and altered cellular heterogeneity, increasing differentiation and decreasing tumor stem cell populations. Surprisingly, AMPK-inactivation decreased mTORC1 activity and decreased Hk2 expression. Hk2 deletion similarly depleted medulloblastoma stem cells, implicating reduced glycolysis in the AMPK-inactivated phenotype. Our results show that AMPK inactivation disproportionately impairs medulloblastoma stem cell populations typically refractory to conventional therapies.

Keywords