Symmetry (May 2024)

Research on Mathematical Modeling of Critical Impact Force and Rollover Velocity of Coach Tripped Rollover Based on Numerical Analysis Method

  • Xinye Wu,
  • Zhiwei Wang,
  • Shenghui Chen

DOI
https://doi.org/10.3390/sym16050543
Journal volume & issue
Vol. 16, no. 5
p. 543

Abstract

Read online

Although the probability of a rollover accident is lower than that of other forms of collision, rollover is a serious accident that can break the symmetry of the vehicle and cause serious loss of life and property. There are many factors affecting rollovers, such as the environment, the vehicle, and the driving control. A coach comprises a complex dynamic system; as such, the accuracy and rationality of the used mathematical model are decisive in the study of coach rollover warning and control. By analogy with the modeling method of an automobile collision accident, the general process of a coach rollover accident is analyzed in this study in combination with the contact form and freedom of motion characteristic of the coach body and external environment. According to the principle of conservation of energy, the mathematical models of critical rollover impact force in a collision between vehicles and obstacles and in a collision between two vehicles are established, allowing for analysis of the relationships between the critical tripped rollover impact forces required for a 90° rollover and the continuous action time and collision point height. During the collision between the vehicle and the obstacle, the occurrence of a vehicle rollover is related not only to the impact force in the collision process but also to the collision duration time. Even if the impact force is relatively small, the collision lasts long enough that a second collision may occur until the vehicle rolls over. In the process of a two-vehicle collision, the critical rollover impact force is not only related to the vehicle mass but also to the vehicle wheelbase and the height of the collision point. Based on the law of conservation of momentum, the mathematic models of 90-degree rollover and 180-degree rollover are established, and the critical rollover velocities are calculated. The purpose of this study is to provide reference and guidance for the research methods of vehicle rollover stability and anti-rollover control in the intelligent vehicle era.

Keywords