Remote Sensing (Apr 2022)

Estimation of Rooftop Solar Power Potential by Comparing Solar Radiation Data and Remote Sensing Data—A Case Study in Aichi, Japan

  • Xiaoxun Huang,
  • Kiichiro Hayashi,
  • Toshiki Matsumoto,
  • Linwei Tao,
  • Yue Huang,
  • Yuuki Tomino

DOI
https://doi.org/10.3390/rs14071742
Journal volume & issue
Vol. 14, no. 7
p. 1742

Abstract

Read online

There have been significant advances in the shift from fossil-based energy systems to renewable energies in recent years. Decentralized solar photovoltaic (PV) is one of the most promising energy sources because of the availability of rooftop areas, ease of installation, and reduced cost of PV panels. The current modeling method using remote sensing data based on a geographic information system (GIS) is objective and accurate, but the analysis processes are complicated and time-consuming. In this study, we developed a method to estimate the rooftop solar power potential over a wide area using globally available solar radiation data from Solargis combined with a building polygon. Our study also utilized light detection and ranging (LiDAR) data and AW3D to estimate rooftop solar power potential in western Aichi, Japan, and the solar radiation was calculated using GIS. The estimation using LiDAR data took into account the slope and azimuth of rooftops. A regression analysis of the estimated solar power potential for each roof between the three methods was conducted, and the conversion factor 0.837 was obtained to improve the accuracy of the results from the Solargis data. The annual rooftop solar power potential of 3,351,960 buildings in Aichi Prefecture under Scenario A, B, and C was 6.92 × 107, 3.58 × 107, and 1.27 × 107 MWh/year, estimated using Solargis data after the adjustment. The estimated solar power potential under Scenario A could satisfy the total residential power demand in Aichi, revealing the crucial role of rooftop solar power in alleviating the energy crisis. This approach of combining Solargis data with building polygons can be easily applied in other parts of the world. These findings can provide useful information for policymakers and contribute to local planning for cleaner energy.

Keywords