Bulletin of the Section of Logic (Mar 2021)
One-Sided Sequent Systems for Nonassociative Bilinear Logic: Cut Elimination and Complexity
Abstract
Bilinear Logic of Lambek amounts to Noncommutative MALL of Abrusci. Lambek proves the cut–elimination theorem for a one-sided (in fact, left-sided) sequent system for this logic. Here we prove an analogous result for the nonassociative version of this logic. Like Lambek, we consider a left-sided system, but the result also holds for its right-sided version, by a natural symmetry. The treatment of nonassociative sequent systems involves some subtleties, not appearing in associative logics. We also prove the PTime complexity of the multiplicative fragment of NBL.
Keywords