Machines (Sep 2024)

Study on the Influence of Plugging Position and Fit on the Motion Stability of Precision Cross Roller Bearing

  • Pu Dong,
  • Rongjun Niu,
  • Yushuo Wang,
  • Ruifang Lv,
  • Lanlan Li,
  • Wenchao Xie

DOI
https://doi.org/10.3390/machines12100678
Journal volume & issue
Vol. 12, no. 10
p. 678

Abstract

Read online

This study addresses the issue of unsatisfactory smoothness in the movement of integrated internal and external cross roller bearings post-assembly, which compromises the movement flexibility of the finished bearing and fails to meet index requirements. Focusing on a specific type of precision cross roller bearing, this paper establishes a finite element explicit dynamic simulation model that takes into account the plugging position and matching relationship. A transient dynamic simulation of the roller blockage process was conducted, yielding insights into the contact pressure and deformation experienced by the roller and plug during this blockage. The results indicate that when both the taper pin are positioned centrally, and the plug matching clearance, plug sag and protruding amount, and plug rotation offset degrees are all set to 0 μm, the contact pressure between the roller and raceway, as well as the roller deformation displacement, are minimized. The plugging position and fit were subsequently validated through testing, which also measured the impact of these parameters on the roundness of the raceway surface and the bearing’s friction torque. The test findings corroborate that when the taper and pin are centrally aligned, and the stopper clearance is 5 μm, with the plug sag, protrusion, and offset all at 0 μm, the roundness of the raceway surface and the bearing’s friction torque reach their lowest values, thereby optimizing the stability of bearing motion. By comparing the simulation and experimental results, it is concluded that during bearing assembly, it is crucial to maintain the taper pin in a central position, control the plug matching clearance to approximately 5 μm, and ensure the plug sag, protrusion, and rotation offset amount are both at 0 μm. This approach guarantees optimal contact conditions and motion stability during operation. The findings of this research offer valuable design guidance for the selection of appropriate plugging positions and fits in precision cross roller bearings.

Keywords