Life (May 2024)
Application of Machine Learning Techniques for the Diagnosis of Obstructive Sleep Apnea/Hypopnea Syndrome
Abstract
Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a condition linked to severe cardiovascular and neuropsychological consequences, characterized by recurrent episodes of partial or complete upper airway obstruction during sleep, leading to compromised ventilation, hypoxemia, and micro-arousals. Polysomnography (PSG) serves as the gold standard for confirming OSAHS, yet its extended duration, high cost, and limited availability pose significant challenges. In this paper, we employ a range of machine learning techniques, including Neural Networks, Decision Trees, Random Forests, and Extra Trees, for OSAHS diagnosis. This approach aims to achieve a diagnostic process that is not only more accessible but also more efficient. The dataset utilized in this study consists of records from 601 adults assessed between 2014 and 2016 at a specialized sleep medical center in Colombia. This research underscores the efficacy of ensemble methods, specifically Random Forests and Extra Trees, achieving an area under the Receiver Operating Characteristic (ROC) curve of 89.2% and 89.6%, respectively. Additionally, a web application has been devised, integrating the optimal model, empowering qualified medical practitioners to make informed decisions through patient registration, an input of 18 variables, and the utilization of the Random Forests model for OSAHS screening.
Keywords