Remote Sensing (Jan 2024)
End-to-End Detail-Enhanced Dehazing Network for Remote Sensing Images
Abstract
Space probes are always obstructed by floating objects in the atmosphere (clouds, haze, rain, etc.) during imaging, resulting in the loss of a significant amount of detailed information in remote sensing images and severely reducing the quality of the remote sensing images. To address the problem of detailed information loss in remote sensing images, we propose an end-to-end detail enhancement network to directly remove haze in remote sensing images, restore detailed information of the image, and improve the quality of the image. In order to enhance the detailed information of the image, we designed a multi-scale detail enhancement unit and a stepped attention detail enhancement unit, respectively. The former extracts multi-scale information from images, integrates global and local information, and constrains the haze to enhance the image details. The latter uses the attention mechanism to adaptively process the uneven haze distribution in remote sensing images from three dimensions: deep, middle and shallow. It focuses on effective information such as haze and high frequency to further enhance the detailed information of the image. In addition, we embed the designed parallel normalization module in the network to further improve the dehazing performance and robustness of the network. Experimental results on the SateHaze1k and HRSD datasets demonstrate that our method effectively handles remote sensing images obscured by various levels of haze, restores the detailed information of the images, and outperforms the current state-of-the-art haze removal methods.
Keywords