Remote Sensing (Dec 2018)

Analysis of Precise Orbit Predictions for a HY-2A Satellite with Three Atmospheric Density Models Based on Dynamic Method

  • Qiaoli Kong,
  • Fan Gao,
  • Jinyun Guo,
  • Litao Han,
  • Linggang Zhang,
  • Yi Shen

DOI
https://doi.org/10.3390/rs11010040
Journal volume & issue
Vol. 11, no. 1
p. 40

Abstract

Read online

HY-2A (Haiyang 2A) is the first altimetry satellite in China, and it was designed to be in a repeated ground track orbit to achieve the mission targets. Maneuvers are necessary to keep the satellite on the designed orbit according to the dynamic precise orbital prediction. Atmospheric density models are essential for predicting the low Earth orbit (LEO) satellites, such as HY-2A. Nevertheless, it is a complex process to determine the optimal atmospheric density model for orbit prediction. In this paper, short-term and long-term orbit predictions based on the dynamic method using three different atmospheric density models are tested. Detailed comparisons and evaluation of the accuracy of the predicted results are performed. Furthermore, to assess the results for the ground tracking of the satellite, the interpolation method especially for a spherical surface is introduced. The results show that among the three models, the Jacchia 1971 model is in the closest agreement with Multi-Mission Ground Segment for Altimetry precise positioning and Orbitography (SSALTO) precise orbits. The root-mean-squares (RMSs) of radial orbit differences between the predicted and precise orbits are 0.016 m, 0.091 m, 0.176 m, 0.573 m, and 1.421 m for predicted 1-h, 12-h, 1-day, 3-day, and 7-day arcs, respectively.

Keywords