Atmospheric Chemistry and Physics (May 2012)

Chamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake

  • S. Nakao,
  • Y. Liu,
  • P. Tang,
  • C.-L. Chen,
  • J. Zhang,
  • D. R. Cocker III

DOI
https://doi.org/10.5194/acp-12-3927-2012
Journal volume & issue
Vol. 12, no. 9
pp. 3927 – 3937

Abstract

Read online

This study evaluates the significance of glyoxal acting as an intermediate species leading to secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> seed particles is observed in agreement with previous studies; however, glyoxal did not partition significantly to SOA (with or without aqueous seed) during aromatic hydrocarbon photooxidation within an environmental chamber (RH less than 80%). Rather, glyoxal influences SOA formation by raising hydroxyl (OH) radical concentrations. Four experimental approaches supporting this conclusion are presented in this paper: (1) increased SOA formation and decreased SOA volatility in the toluene + NO<sub>x</sub> photooxidation system with additional glyoxal was reproduced by matching OH radical concentrations through H<sub>2</sub>O<sub>2</sub> addition; (2) glyoxal addition to SOA seed formed from toluene + NO<sub>x</sub> photooxidation did not increase SOA volume under dark; (3) SOA formation from toluene + NO<sub>x</sub> photooxidation with and without deliquesced (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> seed resulted in similar SOA growth, consistent with a minor contribution from glyoxal uptake onto deliquesced seed and organic coatings; and (4) the fraction of a C<sub>4</sub>H<sub>9</sub><sup>+</sup> fragment (observed by Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer, HR-ToF-AMS) in SOA from 2-tert-butylphenol (BP) oxidation was unchanged in the presence of additional glyoxal despite enhanced SOA formation. This study suggests that glyoxal uptake onto aerosol during the oxidation of aromatic hydrocarbons is more limited than previously thought.