Journal of Synchrotron Radiation (Jan 2022)

Controllable sites and high-capacity immobilization of uranium in Nd2Zr2O7 pyrochlore

  • Jian Sun,
  • Jing Zhou,
  • Zhiwei Hu,
  • Ting-Shan Chan,
  • Renduo Liu,
  • Haisheng Yu,
  • Linjuan Zhang,
  • Jian-Qiang Wang

DOI
https://doi.org/10.1107/S1600577521012558
Journal volume & issue
Vol. 29, no. 1
pp. 37 – 44

Abstract

Read online

As potential nuclear waste host matrices, two series of uranium-doped Nd2Zr2O7 nanoparticles were successfully synthesized using an optimized molten salt method in an air atmosphere. Our combined X-ray diffraction, Raman and X-ray absorption fine-structure (XAFS) spectroscopy studies reveal that uranium ions can precisely substitute the Nd site to form an Nd2–xUxZr2O7+δ (0 ≤ x ≤ 0.2) system and the Zr site to form an Nd2Zr2–yUyO7+δ (0 ≤ y ≤ 0.4) system without any impurity phase. With increasing U concentration, there is a phase transition from pyrochlore (Fd3m) to defect fluorite (Fm3m) structures in both series of U-doped Nd2Zr2O7. The XAFS analysis indicates that uranium exists in the form of high-valent U6+ in all samples. To balance the extra charge for substituting Nd3+ or Zr4+ by U6+, additional oxygen is introduced accompanied by a large structural distortion; however, the Nd2Zr1.6U0.4O7+δ sample with high U loading (20 mol%) still maintains a regular fluorite structure, indicating the good solubility of the Nd2Zr2O7 host for uranium. This study is, to the best of our knowledge, the first systematic study on U-incorporated Nd2Zr2O7 synthesized via the molten salt method and provides convincing evidence for the feasibility of accurately immobilizing U at specific sites.

Keywords