PLoS ONE (Jan 2013)
Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis.
Abstract
The human palatine tonsils, which belong to the central antigen handling sites of the mucosal immune system, are frequently affected by acute and recurrent infections. This study compared the microbiota of the tonsillar crypts in children and adults affected by recurrent tonsillitis with that of healthy adults and children with tonsillar hyperplasia. An in-depth 16S rRNA gene based pyrosequencing approach combined with a novel strategy that included phylogenetic analysis and detection of species-specific sequence signatures enabled identification of the major part of the microbiota to species level. A complex microbiota consisting of between 42 and 110 taxa was demonstrated in both children and adults. This included a core microbiome of 12 abundant genera found in all samples regardless of age and health status. Yet, Haemophilus influenzae, Neisseria species, and Streptococcus pneumoniae were almost exclusively detected in children. In contrast, Streptococcus pseudopneumoniae was present in all samples. Obligate anaerobes like Porphyromonas, Prevotella, and Fusobacterium were abundantly present in children, but the species diversity of Porphyromonas and Prevotella was larger in adults and included species that are considered putative pathogens in periodontal diseases, i.e. Porphyromonas gingivalis, Porphyromonas endodontalis, and Tannerella forsythia. Unifrac analysis showed that recurrent tonsillitis is associated with a shift in the microbiota of the tonsillar crypts. Fusobacterium necrophorum, Streptococcus intermedius and Prevotella melaninogenica/histicola were associated with recurrent tonsillitis in adults, whereas species traditionally associated with acute tonsillitis like pyogenic streptococci and Staphylococcus aureus were scarce. The findings suggest that recurrent tonsillitis is a polymicrobial infection in which interactions within consortia of taxa play an etiologic role. The study contributes to the human microbiome data, to the understanding of the etiology of infections affecting the tonsils, and forms a basis for further insight into the consequences of the intense microbe-host interactions that take place in the tonsils.