Information (Jul 2020)
Spatiotemporal Convolutional Neural Network with Convolutional Block Attention Module for Micro-Expression Recognition
Abstract
A micro-expression is defined as an uncontrollable muscular movement shown on the face of humans when one is trying to conceal or repress his true emotions. Many researchers have applied the deep learning framework to micro-expression recognition in recent years. However, few have introduced the human visual attention mechanism to micro-expression recognition. In this study, we propose a three-dimensional (3D) spatiotemporal convolutional neural network with the convolutional block attention module (CBAM) for micro-expression recognition. First image sequences were input to a medium-sized convolutional neural network (CNN) to extract visual features. Afterwards, it learned to allocate the feature weights in an adaptive manner with the help of a convolutional block attention module. The method was testified in spontaneous micro-expression databases (Chinese Academy of Sciences Micro-expression II (CASME II), Spontaneous Micro-expression Database (SMIC)). The experimental results show that the 3D CNN with convolutional block attention module outperformed other algorithms in micro-expression recognition.
Keywords