Journal of Animal Science and Biotechnology (Nov 2021)
Metabolomic fingerprinting of pig seminal plasma identifies in vivo fertility biomarkers
Abstract
Abstract Background Metabolomic approaches, which include the study of low molecular weight molecules, are an emerging -omics technology useful for identification of biomarkers. In this field, nuclear magnetic resonance (NMR) spectroscopy has already been used to uncover (in) fertility biomarkers in the seminal plasma (SP) of several mammalian species. However, NMR studies profiling the porcine SP metabolome to uncover in vivo fertility biomarkers are yet to be carried out. Thus, this study aimed to evaluate the putative relationship between SP-metabolites and in vivo fertility outcomes. To this end, 24 entire ejaculates (three ejaculates per boar) were collected from artificial insemination (AI)-boars throughout a year (one ejaculate every 4 months). Immediately after collection, ejaculates were centrifuged to obtain SP-samples, which were stored for subsequent metabolomic analysis by NMR spectroscopy. Fertility outcomes from 1525 inseminations were recorded over a year, including farrowing rate, litter size, stillbirths per litter and the duration of pregnancy. Results A total of 24 metabolites were identified and quantified in all SP-samples. Receiver operating characteristic (ROC) curve analysis showed that lactate levels in SP had discriminative capacity for farrowing rate (area under the curve [AUC] = 0.764) while carnitine (AUC = 0.847), hypotaurine (AUC = 0.819), sn-glycero-3-phosphocholine (AUC = 0.833), glutamate (AUC = 0.799) and glucose (AUC = 0.750) showed it for litter size. Similarly, citrate (AUC = 0.743), creatine (AUC = 0.812), phenylalanine (AUC = 0.750), tyrosine (AUC = 0.753) and malonate (AUC = 0.868) levels had discriminative capacity for stillbirths per litter; and malonate (AUC = 0.767) and fumarate (AUC = 0.868) levels for gestation length. Conclusions The assessment of selected SP-metabolites in ejaculates through NMR spectroscopy could be considered as a promising non-invasive tool to predict in vivo fertility outcomes in pigs. Moreover, supplementing AI-doses with specific metabolites should also be envisaged as a way to improve their fertility potential.
Keywords