Metabolites (Sep 2023)

Unveiling the Pharmacological Significance of Marine <i>Streptomyces violaceusniger</i> KS20: Isolation, Characterization, and Assessment of Its Biomedical Applications

  • Bidhayak Chakraborty,
  • Kariyellappa Nagaraja Shashiraj,
  • Raju Suresh Kumar,
  • Meghashyama Prabhakara Bhat,
  • Dhanyakumara Shivapoojar Basavarajappa,
  • Abdulrahman I. Almansour,
  • Karthikeyan Perumal,
  • Sreenivasa Nayaka

DOI
https://doi.org/10.3390/metabo13091022
Journal volume & issue
Vol. 13, no. 9
p. 1022

Abstract

Read online

Marine actinomycetes represent a highly favorable source of bioactive compounds and have been the mainstay of much research in recent years. Recent reports have shown that marine Streptomyces sp. can produce compounds with diverse and potent biological activities. Therefore, the key objective of the study was to isolate and screen a potential actinomycete from marine ecosystems of Devbagh and Tilmati beaches, Karwar. Streptomyces sp. KS20 was characterized and the ethyl acetate extract (EtOAc-Ex) was screened for biomedical applications. Streptomyces sp. KS20 produced grayish-white aerial and pale-yellow substrate mycelia and revealed an ancestral relationship with Streptomyces violaceusniger. Optimum growth of the organism was recorded at 30 °C and pH 7.0. The metabolite profiling of EtOAc-Ex expressed the existence of several bioactive metabolites, whereas the functional groups were indicated by Fourier transform infrared (FTIR) spectroscopy. A considerable antioxidant activity was shown for EtOAc-Ex with IC50 of 92.56 μg/mL. In addition to this, Streptomyces sp. KS20 exhibited significant antimicrobial properties, particularly against Escherichia coli, where a zone of inhibition measuring 36 ± 0.83 mm and a minimum inhibitory concentration (MIC) of 3.12 µg/mL were observed. The EtOAc-Ex even revealed significant antimycobacterial potency with IC50 of 6.25 μg/mL. Finally, the antiproliferative potentiality of EtOAc-Ex against A549 and PC-3 cell lines revealed a constant decline in cell viability while raising the concentration of EtOAc-Ex from 12.5 to 200 μg/mL. The IC50 values were determined as 94.73 μg/mL and 121.12 μg/mL for A549 and PC-3 cell lines, respectively. Overall, the exploration of secondary metabolites from marine Streptomyces sp. KS20 represents an exciting area of further research with the potential to discover novel bioactive compounds that could be developed into therapeutics for various medical applications.

Keywords