Molecular Cancer (Apr 2010)
Myc interacts with Max and Miz1 to repress C/EBPδ promoter activity and gene expression
Abstract
Abstract Background "Loss of function" alterations in CCAAT/Enhancer Binding Proteinδ (C/EBPδ) have been reported in a number of human cancers including breast, prostate and cervical cancer, hepatocellular carcinoma and acute myeloid leukemia. C/EBPδ gene transcription is induced during cellular quiescence and repressed during active cell cycle progression. C/EBPδ exhibits tumor suppressor gene properties including reduced expression in cancer cell lines and tumors and promoter methylation silencing. We previously reported that C/EBPδ expression is inversely correlated with c-Myc (Myc) expression. Aberrant Myc expression is common in cancer and transcriptional repression is a major mechanism of Myc oncogenesis. A number of tumor suppressor genes are targets of Myc transcriptional repression including C/EBPα, p15INK4, p21CIP1, p27KIP1 and p57KIP2. This study investigated the mechanisms underlying Myc repression of C/EBPδ expression. Results Myc represses C/EBPδ promoter activity in nontransformed mammary epithelial cells in a dose-dependent manner that requires Myc Box II, Basic Region and HLH/LZ domains. Chromatin Immunoprecipitation (ChIP) assays demonstrate that Myc, Miz1 and Max are associated with the C/EBPδ promoter in proliferating cells, when C/EBPδ expression is repressed. EMSAs demonstrate that Miz1 binds to a 30 bp region (-100 to -70) of the C/EBPδ promoter which contains a putative transcription initiator (Inr) element. Miz1 functions exclusively as a repressor of C/EBPδ promoter activity. Miz1 siRNA expression or expression of a Miz1 binding deficient Myc (MycV394D) construct reduces Myc repression of C/EBPδ promoter activity. Max siRNA expression, or expression of a Myc construct lacking the HLH/LZ (Max interacting) region, also reduces Myc repression of C/EBPδ promoter activity. Miz1 and Max siRNA treatments attenuate Myc repression of endogenous C/EBPδ expression. Myc Box II interacting proteins RuvBl1 (Pontin, TIP49) and RuvBl2 (Reptin, TIP48) enhances Myc repression of C/EBPδ promoter activity. Conclusion Myc represses C/EBPδ expression by associating with the C/EBPδ proximal promoter as a transient component of a repressive complex that includes Max and Miz1. RuvBl1 and RuvBl2 enhance Myc repression of C/EBPδ promoter activity. These results identify protein interactions that mediate Myc repression of C/EBPδ, and possibly other tumor suppressor genes, and suggest new therapeutic targets to block Myc transcriptional repression and oncogenic function.