Electronic Journal of Differential Equations (Oct 2017)
Blow up of solutions for viscoelastic wave equations of Kirchhoff type with arbitrary positive initial energy
Abstract
In this article we consider the nonlinear Viscoelastic wave equations of Kirchhoff type $$\displaylines{ u_{tt}-M( \| \nabla u\| ^2) \Delta u+\int_0^{t}g_1( t-\tau )\Delta u( \tau ) d\tau +u_t =( p+1)| v| ^{q+1}| u| ^{p-1}u, \cr v_{tt}-M( \| \nabla v\| ^2) \Delta v+\int_0^{t}g_2( t-\tau ) \Delta v( \tau ) d\tau +v_t=( q+1) | u| ^{p+1}| v| ^{q-1}v }$$ with initial conditions and Dirichlet boundary conditions. We proved the global nonexistence of solutions by applying a lemma by Levine, and the concavity method.