BMC Infectious Diseases (Sep 2019)

Antibacterial resistance in ophthalmic infections: a multi-centre analysis across UK care settings

  • Alice E. Lee,
  • Kanchana Niruttan,
  • Timothy M. Rawson,
  • Luke S. P. Moore

DOI
https://doi.org/10.1186/s12879-019-4418-0
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Bacterial ophthalmic infections are common. Empirical treatment with topical broad-spectrum antibiotics is recommended for severe cases. Antimicrobial resistance (AMR) to agents used for bacterial ophthalmic infections make it increasingly important to consider changing resistance patterns when prescribing, however UK data in this area are lacking. We evaluate the epidemiology and antimicrobial susceptibilities of ophthalmic pathogens across care settings and compare these with local and national antimicrobial prescribing guidelines. Methods A retrospective, multi-centre observational analysis was undertaken of ophthalmic microbiology isolates between 2009 and 2015 at a centralised North-West London laboratory (incorporating data from primary care and five London teaching hospitals). Data were analysed using descriptive statistics with respect to patient demographics, pathogen distribution (across age-groups and care setting), seasonality, and susceptibility to topical chloramphenicol, moxifloxacin, and fusidic acid. Results Two thousand six hundred eighty-one isolates (n = 2168 patients) were identified. The commonest pathogen in adults was Staphylococcus spp. across primary, secondary, and tertiary care (51.7%; 43.4%; 33.6% respectively) and in children was Haemophilus spp. (34.6%;28.2%;36.6%). AMR was high and increased across care settings for chloramphenicol (11.8%;15.1%;33.8%); moxifloxacin (5.5%;7.6%;25.5%); and fusidic acid (49.6%;53.4%; 58.7%). Pseudomonas spp. was the commonest chloramphenicol-resistant pathogen across all care settings, whilst Haemophilus spp. was the commonest fusidic acid-resistant pathogen across primary and secondary care. More isolates were recorded in spring (31.6%) than any other season, mostly due to a significant rise in Haemophilus spp. Conclusions We find UK national and local antimicrobial prescribing policies for ophthalmic infections may not be concordant with the organisms and antimicrobial susceptibilities found in clinical samples. We also find variations in microbial incidence related to patient age, clinical setting, and season. Such variations may have further important implications for prescribing practices and modification of antimicrobial guidelines.

Keywords