Foods (Jul 2022)

Total Flavonoids from <i>Chimonanthus nitens</i> Oliv. Leaves Ameliorate HFD-Induced NAFLD by Regulating the Gut–Liver Axis in Mice

  • Wenya Meng,
  • Zitong Zhao,
  • Lingli Chen,
  • Suyun Lin,
  • Yang Zhang,
  • Jing He,
  • Kehui Ouyang,
  • Wenjun Wang

DOI
https://doi.org/10.3390/foods11142169
Journal volume & issue
Vol. 11, no. 14
p. 2169

Abstract

Read online

Non-alcoholic fatty liver disease (NAFLD) is one of the chronic liver diseases with high incidence in the world. This study aimed to investigate whether total flavonoids from Chimonanthus nitens Oliv. leaves (TFC) can ameliorate NAFLD. Herein, a high-fat diet (HFD)-induced NAFLD mice model was established, and TFC was administered orally. The results showed that TFC reduced the body weight and liver index and decreased the serum and hepatic levels of triglyceride (TG) and total cholesterol (TC). TFC significantly reduced the activity of liver functional transaminase. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) decreased by 34.61% and 39.57% in serum and 22.46% and 40.86% in the liver, respectively. TFC regulated the activities of oxidative-stress-related enzymes and upregulated the protein expression of nuclear factor E2-related factor (Nrf2)/heme oxygenase (HO-1) pathway in NAFLD mice, and the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) in serum were increased by 89.76% and 141.77%, respectively. In addition, TFC reduced the levels of free fatty acids (FFA), endotoxin (ET), and related inflammatory factors in mouse liver tissue and downregulated the expression of proteins associated with inflammatory pathways. After TFC treatment, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the liver tissues of NAFLD mice were downregulated by 67.10%, 66.56%, and 61.45%, respectively. Finally, TFC reduced liver fat deposition, oxidative stress, and inflammatory response to repair liver damage and alleviate NAFLD. Further studies showed that TFC regulated the expression of intestinal-barrier-related genes and improved the composition of gut microbiota. Therefore, TFC reduced liver inflammation and restored intestinal homeostasis by regulating the gut–liver axis. Overall, our findings revealed a novel function of TFC as a promising prophylactic for the treatment of NAFLD.

Keywords