EBioMedicine (Dec 2023)
Longitudinal lipidomic profiles during pregnancy and associations with neonatal anthropometry: findings from a multiracial cohortResearch in context
Abstract
Summary: Background: Maternal lipidomic profiling offers promise for characterizing lipid metabolites during pregnancy, but longitudinal data are limited. This study aimed to examine associations of longitudinal lipidomic profiles during pregnancy with multiple neonatal anthropometry using data from a multiracial cohort. Methods: We measured untargeted plasma lipidome profiles among 321 pregnant women from the NICHD Fetal Growth Study-Singletons using plasma samples collected longitudinally during four study visits at gestational weeks (GW) 10–14, 15–26, 23–31, and 33–39, respectively. We evaluated individual lipidomic metabolites at each study visit in association with neonatal anthropometry. We also evaluated the associations longitudinally by constructing lipid networks using weighted correlation network analysis and common networks using consensus network analysis across four visits using linear mixed-effects models with the adjustment of false discover rate. Findings: Multiple triglycerides (TG) were positively associated with birth weight (BW), BW Z-score, length and head circumference, while some cholesteryl ester (CE), phosphatidylcholine (PC), sphingomyelines (SM), phosphatidylethanolamines (PE), and lysophosphatidylcholines (LPC 20:3) families were inversely associated with BW, length, abdominal and head circumference at different GWs. Longitudinal trajectories of TG, PC, and glucosylcermides (GlcCer) were associated with BW, and CE (18:2) with BW z-score, length, and sum of skinfolds (SS), while some PC and PE were significantly associated with abdominal and head circumference. Modules of TG at GW 10–14 and 15–26 mainly were associated with BW. At GW 33–39, two networks of LPC (20:3) and of PC, TG, and CE, showed inverse associations with abdominal circumference. Distinct trajectories within two consensus modules with changes in TG, CE, PC, and LPC showed significant differences in BW and length. Interpretation: The results demonstrated that longitudinal changes of TGs during early- and mid-pregnancy and changes of PC, LPC, and CE during late-pregnancy were significantly associated with neonatal anthropometry. Funding: National Institute of Child Health and Human Development intramural funding.