Scientific Reports (Nov 2024)
Ecological safety of insecticide based on entomopathogenic virus DsCPV-1 for nontarget invertebrates
Abstract
Abstract For the first time under laboratory conditions, the virulence of a unique cypovirus strain, DsCPV-1, which has broad host specificity, was tested on nontarget aquatic organisms (natural species: Gammarus lacustris, Anopheles messeae, Coenagrion lunulatum, Cloeon robusta, Chironomus sp., Ilyocoris cimicoides, and Plea minutissima; laboratory species: Aedes aegypti and Daphnia magna), a terrestrial pollinator species (Apis mellifera), and an entomophage (Podisus maculiventris). The probability of this virus’s accumulation in the bodies of invertebrates and of its transmission along a trophic chain was evaluated by two approaches: bioassays and a molecular diagnostic analysis. In the bioassays, there was no significant increase in mortality among all the tested aquatic and terrestrial nontarget species exposed to DsCPV-1 as compared with control groups (no virus). When we fed Podisus maculiventris with caterpillars having active DsCPV-1 infection (i.e., with the virus replicating in the host) no viral replication was observed in bug. No replication was also observed in mosquitos as well as in bee after viral treatment. Thus, the results show that the DsCPV-1 virus has excellent environmental safety toward many invertebrate species and can be recommended for the control of lepidopteran pests in forestry and agriculture as insecticide with light effect on environment.
Keywords