Frontiers in Cardiovascular Medicine (Aug 2022)

Left atrial acceleration factor as a magnetic resonance 4D flow measure of mean pulmonary artery wedge pressure in pulmonary hypertension

  • Gert Reiter,
  • Gert Reiter,
  • Gabor Kovacs,
  • Gabor Kovacs,
  • Clemens Reiter,
  • Albrecht Schmidt,
  • Michael Fuchsjäger,
  • Horst Olschewski,
  • Horst Olschewski,
  • Ursula Reiter

DOI
https://doi.org/10.3389/fcvm.2022.972142
Journal volume & issue
Vol. 9

Abstract

Read online

BackgroundMean pulmonary artery wedge pressure (PAWP) represents a right heart catheter (RHC) surrogate measure for mean left atrial (LA) pressure and is crucial for the clinical classification of pulmonary hypertension (PH). Hypothesizing that PAWP is related to acceleration of blood throughout the LA, we investigated whether an adequately introduced LA acceleration factor derived from magnetic resonance (MR) four-dimensional (4D) flow imaging could provide an estimate of PAWP in patients with known or suspected PH.MethodsLA 4D flow data of 62 patients with known or suspected PH who underwent RHC and near-term 1.5 T cardiac MR (ClinicalTrials.gov identifier: NCT00575692) were retrospectively analyzed. Early diastolic LA peak outflow velocity (vE) as well as systolic (vS) and early diastolic (vD) LA peak inflow velocities were determined with prototype software to calculate the LA acceleration factor (α) defined as α = vE/[(vS + vD)/2]. Correlation, regression and Bland-Altman analysis were employed to investigate the relationship between α and PAWP, α-based diagnosis of elevated PAWP (>15 mmHg) was analyzed by receiver operating characteristic curve analysis.Resultsα correlated very strongly with PAWP (r = 0.94). Standard deviation of differences between RHC-derived PAWP and PAWP estimated from linear regression model (α = 0.61 + 0.10·PAWP) was 2.0 mmHg. Employing the linear-regression-derived cut-off α = 2.10, the α-based diagnosis of elevated PAWP revealed the area under the curve 0.97 with sensitivity/specificity 93%/92%.ConclusionsThe very close relationship between the LA acceleration factor α and RHC-derived PAWP suggests α as potential non-invasive parameter for the estimation of PAWP and the distinction between pre- and post-capillary PH.

Keywords