International Journal of Molecular Sciences (May 2022)

Suppression of the Proliferation of Huh7 Hepatoma Cells Involving the Downregulation of Mutant p53 Protein and Inactivation of the STAT 3 Pathway with Ailanthoidol

  • Tsui-Hwa Tseng,
  • Chau-Jong Wang,
  • Yean-Jang Lee,
  • Yi-Chia Shao,
  • Chien-Heng Shen,
  • Ko-Chao Lee,
  • Shui-Yi Tung,
  • Hsing-Chun Kuo

DOI
https://doi.org/10.3390/ijms23095102
Journal volume & issue
Vol. 23, no. 9
p. 5102

Abstract

Read online

Ailanthoidol (ATD) has been isolated from the barks of Zanthoxylum ailanthoides and displays anti-inflammatory, antioxidant, antiadipogenic, and antitumor promotion activities. Recently, we found that ATD suppressed TGF-β1-induced migration and invasion of HepG2 cells. In this report, we found that ATD exhibited more potent cytotoxicity in Huh7 hepatoma cells (mutant p53: Y220C) than in HepG2 cells (wild-type p53). A trypan blue dye exclusion assay and colony assay showed ATD inhibited the growth of Huh7 cells. ATD also induced G1 arrest and reduced the expression of cyclin D1 and CDK2. Flow cytometry analysis with Annexin-V/PI staining demonstrated that ATD induced significant apoptosis in Huh7 cells. Moreover, ATD increased the expression of cleaved PARP and Bax and decreased the expression of procaspase 3/8 and Bcl-xL/Bcl-2. In addition, ATD decreased the expression of mutant p53 protein (mutp53), which is associated with cell proliferation with the exploration of p53 siRNA transfection. Furthermore, ATD suppressed the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) and the expression of mevalonate kinase (MVK). Consistent with ATD, the administration of S3I201 (STAT 3 inhibitor) reduced the expression of Bcl-2/Bcl-xL, cyclin D1, mutp53, and MVK. These results demonstrated ATD’s selectivity against mutp53 hepatoma cells involving the downregulation of mutp53 and inactivation of STAT3.

Keywords