Energy and Built Environment (Feb 2025)

Comparative analysis of insulation strategies for improving thermal performance of wall to parkade suspended slab

  • Ali Vaseghi,
  • Craig D. Capano

Journal volume & issue
Vol. 6, no. 1
pp. 147 – 160

Abstract

Read online

This article focuses on the thermal bridging issues associated with interface of parkade concrete suspended slab to base of wall. The study aims to determine the optimal length and thickness of insulation at the top and underside of the suspended slab to minimize heat loss. The thermal performance of wall to parkade suspended slab is investigated, for both wood frame and steel stud constructions. Various insulation configurations are proposed and evaluated, including different lengths and thicknesses of extruded polystyrene foam (XPS) and Fiberglass spray insulations. The thermal performance calculations are conducted using steady-state heat transfer analysis. A finite-element based software is utilized for the simulations. The study provides a detailed methodology for analyzing the thermal performance of building envelope details, considering different insulation configurations. The results of the simulations are presented as Thermal Resistance Values (R-Values) and Linear Thermal Resistance Values (PSI-Values), allowing for a comparison of the thermal efficiency of different insulation configurations. The results show that utilizing the optimal insulation configuration can lead to up to 80 % enhancement in the thermal efficiency of the assembly. The findings serve as a guideline and aim to assist building designers in improving the thermal performance of concrete suspended slabs.

Keywords