Materials Research (Nov 2017)

Band Structure in Carbon Nanostructure Phononic Crystals

  • Edson Jansen Pedrosa de Miranda Júnior,
  • José Maria Campos Dos Santos

DOI
https://doi.org/10.1590/1980-5373-mr-2016-0898
Journal volume & issue
Vol. 20, no. suppl 2
pp. 555 – 571

Abstract

Read online Read online

We investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz.

Keywords