Applied Sciences (Oct 2020)
Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images
Abstract
Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS® from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way.
Keywords