Indian Journal of Urology (Jan 2014)

Robotic-assisted laparoscopic approaches to the ureter: Pyeloplasty and ureteral reimplantation

  • Dinesh Samarasekera,
  • Robert J Stein

DOI
https://doi.org/10.4103/0970-1591.128503
Journal volume & issue
Vol. 30, no. 3
pp. 293 – 299

Abstract

Read online

Introduction and Objectives: The benefits of robotic surgery when compared to standard laparoscopy have been well established, especially when it comes to reconstructive procedures. The application of robotic technology to laparoscopic pyeloplasty has reduced the steep learning curve associated with the procedure. Consequently, this has allowed surgeons who are less experienced with laparoscopy to offer this treatment to their patients, instead of referring them to "centers of excellence". Robotic pyeloplasty has also proved useful for repairing secondary UPJO, a procedure which is considered extremely difficult using a conventional laparoscopic approach. Finally, the pursuit of "scarless" surgery has seen the development of laparoendoscopic single site (LESS) procedures. The application of robotics to LESS (R-LESS) has also reduced the difficulty in performing conventional LESS pyeloplasty. Herein we present a literature review with regards to robotic-assisted laparoscopic pyeloplasty. We also discuss the benefits of robotic surgery with regards to reconstruction of the lower urinary tract. Materials and Methods: A systematic literature review was performed using PubMed to identify relevant studies. There were no time restrictions applied to the search, but only studies in English were included. We utilized the following search terms: Ureteropelvic junction obstruction and laparoscopy; laparoscopic pyeloplasty; robotic pyeloplasty; robotic ureteric reimplantation; robotic ureteroneocystostomy; robotic boari flap; robotic psoas hitch. Results: There has been considerable experience in the literature with robotic pyeloplasty. Unfortunately, no prospective randomized studies have been conducted, however there are a number of meta analyses and systematic reviews. While there are no clear benefits when it comes to surgical and functional outcomes when compared to standard laparoscopic pyeloplasty, it is clear that robotics makes the operation easier to perform. There is also a benefit to the robotic approach when performing a redo-pyeloplasty. Robotic pyeloplasty has also been applied to the pediatric population, and there may be a benefit in older children while in very young patients, retroperitoneal open pyeloplasty is still the gold standard. In the field of single incision surgery R-LESS is technically easier to perform than conventional LESS. However, the design of the current robotic platform is not completely suited for this application, limiting its utility and often requiring a larger incision. Optimized R-LESS specific technology is awaited. What is clear, from a number of analyses, is that robotic pyeloplasty is considerably more expensive than the laparoscopic approach, largely due to costs of instrumentation and the capital expense of the robot. Until cheaper robotic technology is available, this technique will continue to be expensive, and a cost-benefit analysis must be undertaken by each hospital planning to undertake this surgery. Finally, the benefits of upper tract reconstruction apply equally to the lower tract although there is considerably less experience. However, there have been a number of studies demonstrating the technical feasibility of ureteral reimplantation. Conclusions: Robotic-assisted laparoscopic pyeloplasty is gaining popularity, likely due to the shorter learning curve, greater surgeon comfort, and easier intracorporeal suturing. This has allowed more surgeons to perform the procedure, improving accessibility. Robotic technology is also beneficial in the field of LESS. Nevertheless, the procedure still is not as cost-effective as the conventional laparoscopic approach, and until more affordable robotic technology is available, it will not be universally offered.

Keywords