Catalysts (Dec 2020)

A CeO<sub>2</sub> Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review

  • Elzbieta Kusmierek

DOI
https://doi.org/10.3390/catal10121435
Journal volume & issue
Vol. 10, no. 12
p. 1435

Abstract

Read online

The direct discharge of industrial wastewater into the environment results in serious contamination. Photocatalytic treatment with the application of sunlight and its enhancement by coupling with electrocatalytic degradation offers an inexpensive and green technology enabling the total removal of refractory pollutants such as surfactants, pharmaceuticals, pesticides, textile dyes, and heavy metals, from industrial wastewater. Among metal oxide—semiconductors, cerium dioxide (CeO2) is one of the photocatalysts most commonly applied in pollutant degradation. CeO2 exhibits promising photocatalytic activity. Nonetheless, the position of conduction bands (CB) and valence bands (VB) in CeO2 limits its application as an efficient photocatalyst utilizing solar energy. Its photocatalytic activity in wastewater treatment can be improved by various modification techniques, including changes in morphology, doping with metal cation dopants and non-metal dopants, coupling with other semiconductors, and combining it with carbon supporting materials. This paper presents a general overview of CeO2 application as a single or composite photocatalyst in the treatment of various pollutants. The photocatalytic characteristics of CeO2 and its composites are described. The main photocatalytic reactions with the participation of CeO2 under UV and VIS irradiation are presented. This review summarizes the existing knowledge, with a particular focus on the main experimental conditions employed in the photocatalytic and photoelectrocatalytic degradation of various pollutants with the application of CeO2 as a single and composite photocatalyst.

Keywords