Materials (Aug 2023)

Modification and Enhancing Contribution of Fiber to Asphalt Binders and Their Corresponding Mixtures: A Study of Viscoelastic Properties

  • Chao Li,
  • Hao Liu,
  • Yue Xiao,
  • Jixin Li,
  • Tianlei Wang,
  • Longfan Peng

DOI
https://doi.org/10.3390/ma16165727
Journal volume & issue
Vol. 16, no. 16
p. 5727

Abstract

Read online

The performance of asphalt binders and asphalt mixtures can be enhanced by the inclusion of fiber. The viscoelastic characteristics of fiber-reinforced asphalt binders and their corresponding mixtures were characterized in this study. To generate fiber-reinforced asphalt samples for dynamic shear rheometer (DSR) tests, polypropylene fibers (PPFs), polyester fibers (PFs), and lignin fibers (LFs) were added into modified asphalt with a ratio of 5wt%. Indirect tensile resilience tests were conducted on the fiber-reinforced asphalt mixture with Marshall samples, which was prepared with a 6.4% of bitumen/aggregate ratio. The addition of fiber can increase the anti-rutting performance of asphalt binders, and also reduce the anti-fatigue performance of asphalt binders to varying degrees. Viscoelastic properties of the fiber-reinforced asphalt binders are highly dependent on the shape of the used fiber. The resistance of the fiber-reinforced asphalt binders to rutting at high temperatures increases with the roughness degree of the fiber’s surface morphology. PPF-reinforced asphalt binders surpass the others in terms of anti-rutting capabilities. The high-temperature deformation resistance of the PPF-reinforced asphalt mixture is stronger, whereas the low-temperature crack resistance of the PF-reinforced asphalt mixture is stronger, which can be observed from the master curve of indirect tensile resilient modulus.

Keywords