IEEE Open Journal of Engineering in Medicine and Biology (Jan 2025)
Enabling Model-Based Design for Real-Time Spike Detection
Abstract
Goal: This study addresses the inherent difficulties in the creation of neuroengineering devices for real-time neural signal processing, a task typically characterized by intricate and technically demanding processes. Beneath the substantial hardware advancements in neurotechnology, there is often rather complex low-level code that poses challenges in terms of development, documentation, and long-term maintenance. Methods: We adopted an alternative strategy centered on Model-Based Design (MBD) to simplify the creation of neuroengineering systems and reduce the entry barriers. MBD offers distinct advantages by streamlining the design workflow, from modelling to implementation, thus facilitating the development of intricate systems. A spike detection algorithm has been implemented on a commercially available system based on a Field-Programmable Gate Array (FPGA) that combines neural probe electronics with configurable integrated circuit. The entire process of data handling and data processing was performed within the Simulink environment, with subsequent generation of hardware description language (HDL) code tailored to the FPGA hardware. Results: The validation was conducted through in vivo experiments involving six animals and demonstrated the capability of our MBD-based real time processing (latency <= 100.37 µs) to achieve the same performances of offline spike detection. Conclusions: This methodology can have a significant impact in the development of neuroengineering systems by speeding up the prototyping of various system architectures. We have made all project code files open source, thereby providing free access to fellow scientists interested in the development of neuroengineering systems.
Keywords