Functional subtypes of synaptic dynamics in mouse and human
John Beninger,
Julian Rossbroich,
Katalin Tóth,
Richard Naud
Affiliations
John Beninger
Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
Julian Rossbroich
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
Katalin Tóth
Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
Richard Naud
Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Physics, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Corresponding author
Summary: Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model-based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.