Viruses (Jun 2023)

COVID-19: S-Peptide RBD <sub>484–508</sub> Induces IFN-γ T-Cell Response in Naïve-to-Infection and Unvaccinated Subjects with Close Contact with SARS-CoV-2-Positive Patients

  • Michela Murdocca,
  • Gennaro Citro,
  • Eleonora Centanini,
  • Rosalinda Giannini,
  • Andrea Latini,
  • Federica Centofanti,
  • Eva Piano Mortari,
  • Dario Cocciadiferro,
  • Antonio Novelli,
  • Sergio Bernardini,
  • Giuseppe Novelli,
  • Federica Sangiuolo

DOI
https://doi.org/10.3390/v15071417
Journal volume & issue
Vol. 15, no. 7
p. 1417

Abstract

Read online

Despite the availability on the market of different anti-SARS-CoV-2 vaccines, there are still unanswered questions on whether they can stimulate long-lasting protection. A deep understanding of adaptive immune response to SARS-CoV-2 is important for optimizing both vaccine development and pandemic control measures. Among cytokines secreted by lymphocytes in response to viral infection, IFN-γ plays a pivotal role both in innate and adaptive immunity. In this study, we report on 28 naïve-to-SARS-Cov-2-infection and unvaccinated subjects, having reported a close and prolonged contact with COVID-19-positive patients. Samples were tested for defective genetic variants in interferon pathway genes by whole exome sequencing and anti-IFN autoantibodies production was investigated. Subject T-cells were cultured and infected with pseudotype particles bearing the S proteins and in parallel stimulated with two S-peptides designed on the RBD region of the spike protein. Our results showed that one of these peptides, RBD 484–508, induces a significant increase in IFN-γ gene expression and protein production in T-cells, comparable to those obtained in cells infected by SARS-CoV-2 pseudovirus. This work deepens our understanding of immune response and highlights the selected peptide as a reasonable approach to induce broad, potent, and variant concern-independent T-cell responses.

Keywords